Inactive RA patients all presented DAS 28 scores of <2.6, i.e. all were judged to be in remission of disease. No significant differences in the clinical data were observed for those patients with RA in activity and undergoing different treatments. Healthy individuals were used as controls in the study (mean age, 36.1 years; 50 females and 58 males); age and gender of the individuals were not found to influence the adhesive and chemotactic properties of their neutrophils under the conditions used. Neutrophils from healthy control individuals and patients with active and inactive RA disease (undergoing all treatment options studied)
were isolated and allowed to adhere to FN under static conditions, in the absence (basal) and presence of an inflammatory stimulus (500 ng/ml IL-8) (Fig. 1A). Data indicate that whilst active RA was not associated with Belnacasan cost any significant alteration in neutrophil adhesive properties, in vitro, neutrophils from patients AG-014699 concentration in disease remission demonstrated significantly decreased
adhesive properties, compared to active RA individual neutrophils, both in the presence and absence of an inflammatory stimulus. Similarly, neutrophils from active RA individuals (undergoing all treatment regimens analysed) did not demonstrate significantly altered chemotactic properties, neither in the absence of a chemotactic stimulus nor in the presence of an IL-8 stimulus (Fig. 1B), when compared to control individual neutrophils. Interestingly, the chemotactic properties of inactive RA individuals, in the absence of stimulus, were
diminished when compared to those of active RA neutrophils (Fig. 1B). In patients with active RA, different treatment regimens (i.e. no treatment with RA-specific drugs [NT], treatment with disease-modifying anti-rheumatic drugs [DMARDs] or anti-TNF-α [AB] drugs) were not found to significantly alter the adhesive properties of neutrophils neither in the absence (Fig. 2A), nor in the presence of an IL-8 stimulus (data not shown). Anti-TNF-α therapy was found to augment neutrophil chemotaxis in response to IL-8 (although this increase was not found to be significant; Fig. 2C), but no effect of any of the therapies were found on the spontaneous chemotactic properties (without chemotactic stimulus) of neutrophils from active RA subjects (Fig. 2B). When neutrophils 17-DMAG (Alvespimycin) HCl from RA patients in remission were studied, therapy with DMARDs was found to diminish the basal adhesive and chemotactic properties of neutrophils (Fig. 2), but these alterations were not found to be statistically significant. In contrast, neutrophils from inactive RA patients on anti-TNF-α therapy demonstrated significantly lower adhesive properties and spontaneous chemotaxis (Fig. 2A,B), but no significant alterations in IL-8-stimulated chemotactic properties (Fig. 2C), when compared to these parameters for control individual neutrophils and active RA individuals on anti-TNF-α.