jejuni real-time PCR assay Conversely,

all the Campyloba

jejuni real-time PCR assay. Conversely,

all the Campylobacter tested were identified as C. coli by both methods. In France, pigs were found to be almost always contaminated by C. coli, these first results confirmed this predominance. Nevertheless, given that we can find both species in pigs [10, 12–14], these real-time PCR assays allow a direct and rapid investigation of the carriage and the excretion of C. coli and C. jejuni in conventional pigs. Conclusion The real-time PCR assays for C. coli and C. jejuni described in this study have several advantages over culture-based techniques. These include allowing a large increase in throughput, enabling simultaneous processing of several samples (the real-time PCR can be run in a 96-well format and many steps in the assay can be automated), and reducing the total time required for analysis. The identification at the species level and the quantification on the entire see more DNA extracted from faecal, feed, and environmental samples is a new tool to enhance our understanding of the epidemiology of Campylobacter. In terms of risk assessment, this ability to differentiate and quantify these two species permits a more precise description of the carriage and excretion of C. coli and C. jejuni by livestock animals. Methods Bacterial Buparlisib manufacturer strains and culture conditions Selleck KU55933 Different Campylobacter spp., Helicobacter, Wolinella, and Arcobacter reference

strains were used to test the specificity of primers and probes for real-time PCR identification and differentiation of C. coli and C. jejuni (Table 1). In addition,

we have tested 50 C. jejuni and 75 C. coli isolates (from human, poultry, and pig origin) as well as other enteric bacteria (clinical isolates and reference strains) selected from our in-house collection, the collection of the French Agency for Food, Environmental and occupational Health and Safety (Anses, Ploufragan), and the collection of the French National Reference Center for Campylobacter and Helicobacter (CNR-CH, Bordeaux). Strains were stored at -80°C in brain heart infusion broth (Difco, Detroit, Michigan) containing 20% (v/v) glycerol. Moreover, for the Microbiology inhibitor real-time PCR reactions, we used the two reference strains C. jejuni NCTC 11168 and C. coli CIP 70.81 as positive controls as well as Listeria monocytogenes ATCC 19115 and Escherichia coli CIP V517 as negative controls. Campylobacter strains were grown at 25, 37 or 41.5°C for 48 h in a microaerobic atmosphere (5% O2, 10% CO2, 85% N2) on Karmali agar plates (Oxoid, Dardilly, France). Arcobacter, Helicobacter, and Wolinella were grown at 37°C for 48 h on Columbia Blood agar plates (Oxoid, Dardilly, France) with 5% of defibrinated sheep blood (AES Chemunex, Combourg, France) and Enterobacter aerogenes on Purple Lactose agar plates (BCP, AES Chemunex, Combourg, France) for 24 h.

Comments are closed.