Natural tocopherol, particularly α-tocopherol, is superior to synthetic forms as a radical chain-breaking antioxidant. The presence of this natural vitamin E in palm oil ensures a longer shelf-life for palm-based food products. By acting as an antioxidant, vitamin E plays an important role in the stabilization of oils and fats (Al-Saqer et al. 2004). Gas chromatographic analysis of peach palm sterols revealed the existence
of several δ-5-sterols (i.e., cholesterol, campesterol, click here stigmastérol, β-sitosterol and δ-5-avenastérol). A HPLC study of tocopherols and tocotrienols showed that alpha tocopherol predominates in the banding patterns (Lubrano et al. 1994). Bereau et al. (2003) reported low levels of antioxidant (vitamin E) levels, more similar to those VX-661 in vivo of olive oil than palm oil. Carotenoids
Carotenoids are a group of phytochemicals, which are responsible for different colors of foods (Edge et al. 1997), including the orange to red color of the peach palm fruit mesocarp. Carotenoids are known to possess high anti-oxidant potential, which is considered to play an important role in preventing human diseases (Rao and Rao 2007). Epidemiological studies strongly suggest that consumption of carotenoid-rich foods reduces the incidence of diseases such as cancers and cardiovascular diseases (Ziegler 1989). Diets that are rich in fruits and vegetables, Erastin cell line particularly with cooked products containing oil, offer the health benefits of carotenoids (Perera and Yen 2007). Latin America has a wide variety of carotenogenic foods that are notable for their diversity and high levels of carotenoids, but chemical assays commonly underestimate the antioxidant activity of food carotenoids (Rodriguez-Amaya 1999, 2010). In this respect peach palm can be considered a promising food crop, as its mesocarp is generally rich in β-carotene, though the level varies greatly (Arkcoll and
Aguiar 1984). Furtado et al. (2004) studied carotenoid concentration in vegetables and fruits that are commonly consumed in Costa Rica, reporting values for peach palm of 4.2, 59.1, 93.2, 20.5 and 63.7 μg g−1 for α-carotene, trans-β-carotene, cis-β-carotene, trans-lycopene and cis-lycopene, respectively. Jatunov et al. (2010), using spectrophotometry, found significant differences in the total carotenoid content of six varieties of B. gasipaes from Costa Rica. Blanco and Munoz (1992) found similar carotenoid contents in raw and cooked peach palm and determined nutrient retention after cooking to be greater than 85 %. De Rosso and Mercadante (2007) quantified carotenoids in six Amazonian fruit species commonly sold in the city of Manaus (i.e., Mauritia Vinifera, AZD1152 Mammea Americana, Geoffrola striata, B. gasipaes, Physalis angulata and Astrocaryum aculeatum).