These results provide further evidence for increased bihemispheri

These results provide further evidence for increased bihemispheric contributions to motor

control in patients with MS relative to healthy controls. They further suggest that multicentre fMRI studies of FC changes are possible, and provide a potential imaging biomarker for use in experimental therapeutic studies directed at enhancing adaptive plasticity in the disease. “
“Metabolic signals related to feeding and body temperature regulation have profound effects on vigilance. Brown adipose tissue (BAT) is a key effector organ in the regulation of metabolism in several species, including rats and Obeticholic Acid mice. Significant amounts of active BAT are also present throughout adulthood in humans. The metabolic activity of BAT is due to the tissue-specific presence of the uncoupling protein-1 (UCP-1). To test the involvement of BAT thermogenesis in sleep regulation, we investigated the effects of two sleep-promoting stimuli in UCP-1-deficient mice. Sleep

deprivation by gentle handling increased UCP-1 mRNA expression in BAT and elicited rebound increases in non-rapid-eye-movement sleep and rapid-eye-movement sleep accompanied by elevated slow-wave activity of the electroencephalogram. EPZ015666 in vitro The rebound sleep increases were significantly attenuated, by ~ 35–45%, in UCP-1-knockout (KO) mice. Wild-type (WT) mice with capsaicin-induced sensory denervation of the interscapular BAT pads showed similar impairments in restorative sleep responses after sleep deprivation, suggesting a role of neuronal sleep-promoting Afatinib datasheet signaling from the BAT. Exposure of WT mice to 35 °C ambient temperature for 5 days led to increased sleep and body temperature and suppressed feeding and energy expenditure. Sleep increases in the warm environment were significantly suppressed, by ~ 50%, in UCP-1-KO animals while their food intake and energy expenditure did not differ from those of the WTs. These results

suggest that the metabolic activity of the BAT plays a role in generating a metabolic environment that is permissive for optimal sleep. Impaired BAT function may be a common underlying cause of sleep insufficiency and metabolic disorders. “
“Key questions remain regarding the processes governing gliogenesis following central nervous system injury that are critical to understanding both beneficial brain repair mechanisms and any long-term detrimental effects, including increased risk of seizures. We have used cortical injury produced by intracranial electrodes (ICEs) to study the time-course and localization of gliosis and gliogenesis in surgically resected human brain tissue. Seventeen cases with ICE injuries of 4–301 days age were selected.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>