The cells Selleck VX-680 were collected by filtration using Millipore filters GSWP04700 (0.2 μm) (Millipore Corp. Billerica, MA, USA), washed using basal medium with glucose and used for inoculation to give a final concentration of 105 cells/ml. These cells were induced to form germ tubes in the presence and absence of effectors of PLA2 activity in a basal medium with glucose at pH 4.0 and 25°C. Parallel cultures were inoculated with unbudded yeast cells and at 6 and
9 h after inoculation the content of a flask was filtered for the determination of the percentage of cells with germ tubes for each of the substances tested. These same yeast cells were inoculated to give a final concentration of 107 cells/ml and induced to re-enter the yeast cell cycle as described previously in the presence and absence of effectors of PLA2 in a basal medium with glucose at pH 7.2 and 25°C with aeration. At 6 and 9 h after inoculation samples were taken and the percentage of budding cells was recorded. The following substances were tested for their effects on the yeast to mycelium transition and the yeast cell cycle: arachidonic acid (40 μM; AACOCF3 (100 μM; Nonadeca-4,7,10,13-tetraenyl-trifluoro-methyl
ketone) [46] and isotetrandrine (50 μM; 6,6′,7,12-tetra methoxy-2,2′-dimethyl-berbaman) [47]. These substances were obtained Crenolanib from Calbiochem, EMD Biosciences Inc. (Darmstadt, Germany). The results are expressed as the average percentage of cells with germ tubes or buds at 6 and 9 h of incubation ± one standard deviation of at least three independent determinations. The Student t test was used to determine the statistical significance of the data. A 95% confidence level was used to determine statistical significance. Acknowledgements The authors wish to acknowledge the technical support of Ms. Claribel González in sequencing the sspla 2 gene and the cooperation of graduate student Mr. Jorge Rodríguez with the cloning of PCR products. This investigation was supported by the National Institute of General Medicine, Minority Biomedical
Research Support Grant 3S06-GM-008224 and partially by the RISE Program grant R25GM061838. RGM acknowledges funding through NIH NIGMS grant T36GM008789-05 and acknowledges the use of the Pittsburgh Supercomputing Center National Resource for Biomedical Supercomputing resources funded through NIH NCRR grant 2 P41 RR06009-16A1. Electronic supplementary Liothyronine Sodium material Additional file 1: Complete multiple sequence alignment of S. schenckii SSPLA 2 to selected cPLA 2 fungal homologues. The complete multiple sequence alignment of fungal cPLA2 homologues to SSPLA2 as described in the click here methods is presented here. (PDF 101 KB) References 1. Travassos LR, Lloyd KO: Sporothrix schenckii and related species of Ceratocystis. Microbiol Rev 1980,44(4):683–721.PubMed 2. Betancourt S, Torres-Bauza LJ, Rodriguez-Del Valle N: Molecular and cellular events during the yeast to mycelium transition in Sporothrix schenckii.